
Copyright is held by the author / owner(s). 
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012. 
ISBN 978-1-4503-1435-0/12/0008 

Creating vast game worlds - Experiences from Avalanche Studios 
 

Emil Persson, Avalanche Studios 

emil.persson@avalanchestudios.se 

 
1. Issues with vast game worlds 
 

Creating vast game environments introduces several 
complex issues that are not present in smaller game 
worlds. As the size of the world grows issues with 
floating point precision arise, causing objects to jitter, 
simulation to become unstable, and rendering to exhibit 
artifacts. These problems were very apparent during 
development of Just Cause 2 and had to be addressed. 
Depending on location in the game animated foliage 
exhibited vertices snapping up to decimeter sized 
increments. Trees were at times jumping instead of 
swaying. In the distance there were severe z-fighting 
issues. Shadows were sometimes unstable. The shadow acne that 
occurred could not be effectively dealt with using the standard 
depth bias approach. Additionally, sampling depth buffers using 
vendor-provided methods yielded insufficient precision. Several 
techniques were developed to reduce precision loss at every part 
of the pipeline. 

Meanwhile the amount of data to represent such a vast 
environment is overwhelming. Consequently significant amount 
of work was invested in a high performance streaming solution to 
dynamically load and unload the required data. In addition 
techniques were developed to make the world appear interesting 
from huge distances, even for areas currently not loaded. 
Furthermore, several novel approaches were developed for better 
utilizing the limited memory available on current generation 
consoles. This allowed more objects to stay resident in memory. 

Rendering a large game world with a lot of detail presents yet 
another challenge. The city in Just Cause 2 turned out to be 
particularly problematic, with a huge amount of objects to render. 
Several other locations were also equally challenging to render. A 
number of techniques were devised to deal with this problem, 
including a highly optimized occlusion culling system, a batching 
system, and a sophisticated level-of-detail system. 

Post Just Cause 2 the Avalanche Engine has seen several radical 
changes presenting new issues which require new solutions for the 
newer titles under development. With the switch to deferred 
rendering, the addition of an indoor mode, new features such as 
dynamic lights casting shadows, a new set of precision issues has 
occurred with a new set of solutions required. With the additional 
memory required for deferred rendering and full HDR rendering 
the memory constraints have become significantly tighter. 
 

2. Summary of solutions 
 

To deal with precision issues we unchained matrices in shaders 
to avoid lossy dependencies. We eliminated large offsets by 
decomposing matrix transformation and merging intermittent 
translations. Floating point timers were reset on opportunity. 
Fixed point was used where appropriate. The depth-buffer was 
reversed and floating point depth was used on consoles. Sampling 
depth on PS3 was done with a custom resolve shader that 
preserved precision despite lossy results from texture unit and 
partial precision math. 

Unstable shadows were fixed using a sub-pixel jitter 
compensation shift merged into the shadow matrix. The shadow 
range was dynamically adjusted depending on player elevation 
over ground. Resizing of the shadow range was made discreet to 

avoid unstable shadows due to range expansion. Objects were 
culled from shadow passes based on clip-space size. Shadow 
rendering costs remained largely constant even when expanded. 
The shadow cascades were store in an atlas to allow single-sample 
shadows. Cascade transitions were hidden using a screen-space 
dithering approach. 

The streamer uses a double-buffered, concurrent, out-of-order 
engine where reading data and creating resources happens in 
parallel. The data is pre-optimized on disk in gigabyte sized 
archives and related resources placed adjacently. The streamer 
automatically reorders requests to minimize disk seeks. Memory 
was better utilized by analyzing temporal overlap and reusing 
render target memory for temporally non-overlapping surfaces. 
Luminance textures were merged into channels of DXT textures 
and extracted with hardware configurable swizzles on consoles. 
1ms of GPU time was traded for 6MB memory on Xenon by 
converting 32bit shadow maps to 16bit using a memory export 
shader. Vertices were compressed from float to shorts. This 
caused issues when vertices snapped differently for models placed 
adjacently, leaving ugly gaps. This was solved by quantizing 
models together using common settings, trading some precision 
for consistency. Normals and tangent vectors were compressed 
into single floats. Post-JC2 this was improved to store a complete 
tangent space (including bitangent flip-bit) in only four bytes. 

The general LOD system for models was complemented with a 
landmark system to keep the world alive and navigable at huge 
distances. See for instance the twin towers of Panau Falls Casino 
miles away, over Rico’s right shoulder in Figure 1. A distant light 
system was implemented to give the world life at large distances, 
as seen in Figure 1, especially at night, but also during daytime. 

Particles were optimized using a novel particle trimming 
algorithm generating optimized polygons encapsulating the 
“meat” of the particle while cutting away as much of the empty 
space as possible given a target vertex count. This roughly 
doubled particle rendering performance on average (including 
clouds) without affecting visual quality at all. 

BFBC (Brute Force Box Culling), a low-level asynchronous 
SIMD optimized occlusion culling system was implemented that 
operates on artist provided occluder boxes and system provided 
bounding boxes. Higher level systems were built on top of this 
where objects could be managed grid-based, as compounds or 
instance-based depending on particular system needs. 

Post-JC2 the build system has been vastly improved with tools 
for running the latest build directly over http from a server. Hot-
reload and direct link has been implemented to improve iteration 
times. Trust in the pipeline has been achieved. 

Figure 1. View over the vast game world of Just Cause 2. 

 

mailto:emil.persson@avalanchestudios.se

